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Abstract Several molecular properties are calculated for
a set of 26 cannabinoid compounds with the goal of
connecting the psychoactivity of the compounds with an
appropriate set of calculated properties. For this purpose
we used quantum chemical (the AM1 semi-empirical
method) and chemometric methods. The AM1 method
was employed to calculate the set of quantum chemical
molecular properties and the chemometric methods were
employed with the aim of selecting the most relevant
properties to be correlated with psychoactivity. The
chemometric methods used were Principal Component
Analysis (PCA), Hierarchical Cluster Analysis (HCA)
and the K-Nearest Neighbor (KNN) method. The che-
mometric analysis showed that an electronic property
(energy of LUMO), a hydrophobic property (log P), a
steric property (volume of the substituent at the C4 po-
sition) and a topological property (Lovasz–Pelikan in-
dex) were the most important variables for the separation
between the psychoactive and psychoinactive com-
pounds. In order to validate our PCA, HCA and KNN
results, eight new cannabinoid compounds (with known
psychoactivity) were used in a prediction study and were
classified correctly by the methods used in this work,
indicating that our PCA, HCA and KNN models are
able to predict reliable psychoactivity of cannabinoid
compounds.

Keywords Cannabinoid compounds Æ Psychoactivity Æ
Quantum chemical and chemometric methods

Introduction

The plant Cannabis sativa L. has been used by man for
centuries for eating, medicinal practices and religious

rituals [1]. The Assyrians considered the C. sativa as the
major drug of their pharmacopoeia and named it
according to its use, e.g.: qunnabu, when it was used in
religious rituals; azallu, a medicinal term as well as
hemp; gan-zi-gun-nu which is translated as ‘‘the drug
that takes the mind away’’ [1]. Nowadays, there are
many valuable discoveries regarding Cannabis, but many
myths and uncertainties still persist. Due to the great
interest in the effects caused by the compounds extracted
from the Cannabis, several studies have been carried out
with the aim to better understand the relationship be-
tween the chemical structure and the biological activity
of cannabinoid compounds [2–4].

By the mid-1970s, most cannabinoids had been iso-
lated, synthesized and their metabolic pathways eluci-
dated [5]. Some industries and academic laboratories
initiated projects to develop cannabinoid-based drugs.
However, separation between the psychotropic effects
and the medically useful ones was not achieved, except
for Nabilone (a potent THC-type drug) [5]. Nabilone
has been used in some countries, UK for example, as an
antiemetic agent. D9 -THC is also used for this purpose
as well as for enhancement of appetite. D8 -THC, which
is considerably less expensive to prepare and as active as
D9 -THC in antiemetic studies is not marketed, appar-
ently for purely commercial reasons [5].

The rational search for new drugs is a very efficient
strategy to obtain more specific, potent compounds
without side effects. Some methods used for this strategy
include studies based on structure-activity relationships
(SAR) and quantitative structure-activity relationships
(QSAR) [6]. The main goal of applying these methods in
this work is to transform the chemical structure of a
compound into a set of numbers (parameters, properties
or variables) that correlate with the biological activity,
establishing a qualitative/quantitative relationship be-
tween calculated molecular properties and biological
activity [7].

Here, the quantum chemical AM1 semi-empirical
method [8] is employed to calculate the molecular
parameters (properties) that are possibly correlated with
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the psychoactivity and psychoinactivity within a set of
26 cannabinoid compounds. In sequence, pattern rec-
ognition methods [9, 10] are employed to correlate the
calculated parameters and the psychoactivity presented
by the cannabinoid compounds. The pattern recognition
methods used were Principal Component Analysis
(PCA) [11–13], Hierarchical Cluster Analysis (HCA) [14]
and K-Nearest Neighbor (KNN) [15]. The PCA, HCA
and KNN methods were employed in this work with the
aim of extracting the most relevant information from the
data set and classifying the compounds studied into two
different groups (psychoactive or psychoinactive).

Cannabinoid molecules have a typical structure as
shown in Fig. 1 (the numbering system used in this work
is also shown). The chemical structure of each cannab-
inoid molecule studied, along with its activity indication,
is displayed in Fig. 2. The 26 cannabinoid compounds
were classified into two classes: actives and inactives,
based on the effects caused on rhesus monkeys when the
compounds were intravenously injected [16–20]. Other
than our 26 cannabinoid compounds studied (the
training set), eight new cannabinoid compounds with
known psychoactivity [16–20] were used in a prediction
study with the aim of assessing our PCA, HCA and
KNN results obtained with the training set. The chem-
ical structures of these eight new compounds are pre-
sented in Fig. 3.

Methodology

Geometry optimization

In order to obtain the most stable conformation for each
compound under study, we used a combination of
molecular mechanics and quantum chemical semi-
empirical calculations. A pre-optimization of the
geometries was carried out by using the MM+ molec-
ular mechanics method [21], as implemented in the Hy-
perchem program [22]. Afterwards, we carried out a
conformational search with the goal of obtaining the
lowest energy conformation of the compounds by using
the Chemplus program [23]. After that we performed a
full geometry optimization using the AM1 semi-empiri-

cal method [8] of the AMPAC 6.5 program [24] with the
EF and PRECISE keywords. In this way, we tried to
ensure that the most stable geometry for each cannabi-
noid compound was found. In fact there is no guarantee
that the lowest energy conformations found here by
optimization are exactly the bioactive ones, but we be-
lieve that the calculated molecular descriptors associated
to the lowest energy conformers will not change drasti-
cally for the biologically active ones.

Molecular descriptors

In our structure-activity relationships (SAR) study,
some molecular properties (variables or descriptors) are
evaluated in order to determine which among them
could be the most important variables in explaining the
psychoactivity presented by the cannabinoid com-
pounds. Four kinds of properties were considered in this
work: electronic, steric, hydrophobic and topological, as
the interaction between a compound and the biological
receptor can very often occur due to electronic, hydro-
phobic, steric and topological features of the com-
pounds.

The molecular descriptors were calculated making
use of the AM1 semi-empirical method [8]. This method
was employed to determine structural and electronic
parameters to be correlated with the psychoactivity.
These parameters include bond distances, torsion angles,
bond orders, ionization potential, energies of the highest
occupied molecular orbital (HOMO) and lowest unoc-
cupied molecular orbital (LUMO) frontier orbitals, etc.
Besides the AM1 method, we made use of the program
Chemplus [23], to calculate hydration energy, molar
refractivity, molecular volume and molecular surface
area, and Spartan 5.0 [25], to calculate Log P (the n-
octanol/water partition coefficient).

For the calculation of topological properties, we
made use of the WHIM/3D-QSAR program [26] that
evaluates a large variety of these descriptors that rep-
resent different sources of chemical information. The
WHIM descriptors contain information on the whole
3D molecular structure in terms of size, shape, symmetry
and atom distribution [27].

SAR analyses

In this work, we also employed the chemometric meth-
ods PCA, HCA and KNN in order to identify which of
the calculated molecular properties would be responsible
for the psychoactivity presented by the cannabinoid
compounds.

The PCA method was used with the aim of reducing
the set of molecular properties and exploring the main
information contained in the data set. The PCA is a
multivariate technique that is designed to reduce the
dimensionality of a data set (or training set), that pre-
sents a large number of interrelated variables, while

Fig. 1 General structure and numbering used for the 26 cannab-
inoid molecules studied
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retaining as much as possible the variation of the data
set. This is achieved by transforming the original vari-
ables into a new set of variables called principal com-
ponents (PCs). The PCs are uncorrelated and ordered so
that the first PC retains most of the variance present in
the data [28].

The HCA method was used as this technique exam-
ines the distances between the samples in a data set and
represents this information as a two-dimensional plot
called a dendrogram. The HCA method is an excellent
tool for preliminary data analysis and is informative
when comparing the resulting dendrogram in conjunc-
tion with PCA, as they provide complementary infor-
mation. In HCA, each element is used to generate a
similarity matrix. The two most similar elements are
fused to form a cluster and the process of generating and
analyzing a new similarity matrix is repeated. Again the
two most similar elements are fused. The process is then

repeated iteratively until all the elements belong to a
single group, after the final fusion [9, 14, 29].

The KNN method was used to validate our initial
data set, as it classifies a new object (compound)
according to its distance to an object in the training set.
The closest neighbors of the training set are found and
an object is assigned into a given class that has the
largest number of nearest neighbors. This method is self-
validating because in the training set each sample (ob-
ject) is compared with all of the objects in the set but not
with itself. The best value of K can be chosen based on
the results from the training set alone [30, 31].

Results and discussion

Reduction of the number of descriptors

After the calculation of the relevant variables, they were
autoscaled so that each had equal importance in each
analysis. This kind of treatment ensures that the relative
influences of different variables on the calculation are
independent of their respective units. Afterwards, in

Fig. 2 Chemical structure of the 26 cannabinoid molecules studied

Fig. 2 (Contd.)
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order to perform our PCA analysis with the calculated
molecular descriptors, it was necessary to reduce their
number by choosing the most relevant ones, from an
initial 116 (see Table 1). Such a large number of vari-
ables can cause difficulties with PCA analysis. The
reduction of the number of descriptors was carried out
using the Fisher’s weight [10, 14] and a correlation ma-
trix between the calculated variables. PCA can be used

to reduce the number of descriptors, but we decided to
use, preliminarily, the Fisher’s weight because this sta-
tistic takes into account the variance of the calculated
descriptors into each class of compounds (active and
inactive) giving an indication of the discriminatory
power (i.e., the relative importance) of each descriptor.
The values of the Fisher’s weight for the calculated
variables are presented in Table 1.

Fig. 3 Chemical structure of
the eight cannabinoid molecules
used in the prediction study
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After reducing our initial set of 116 descriptors (Ta-
ble 1), we selected only 20 variables that showed sig-
nificant weight values, i.e. gave a Fisher’s weight above
0.60. These variables were those that possessed a higher
ability in the discrimination (separation) between psy-
choactive and psychoinactive molecules.

From the twenty selected variables obtained by using
the Fisher’s weight, we also attained the correlation
matrix among them (see Table 2). From Table 2 we can
see that some variables are correlated to each other (we
considered correlated variables as only those that pos-
sess correlation coefficients above 0.70), and according
to the results showed in Tables 1 and 2 (Fisher’s weight
and correlation matrix) only a remaining eight variables
were considered important for the separation between
active and inactive compounds. These variables were: l
(dipole moment), ELUMO (energy of the lowest unoccu-
pied molecular orbital), Log P (logarithm of the parti-
tion coefficient), EL+1 (energy of the lowest unoccupied
molecular orbital above LUMO), Q4¢ (total charge of
the substituent at the C4 position), VC4 (volume of the
substituent at the C4 position), E1m (variable regarding
the atomic masses) and Lovasz–Pelikan index
(LPI)—molecular branching index.

PCA results

Using the eight variables selected by the Fisher’s weight
and the correlation matrix, we carried out several PCA
analyses with the aim of selecting the most important
descriptors for the discrimination between active and

inactive cannabinoid compounds. After that, the best
discrimination was obtained by using four out of the 116
variables calculated initially: ELUMO, Log P, VC4 and
LP1. The values for ELUMO, Log P, VC4 and LP1 in the
PCA analysis are presented in Table 3.

In Fig. 4 we can see the score plot which presents the
coordinates (scores) of each cannabinoid molecule in the
new coordinate system based on PCs. From Fig. 4 one
can see the good separation obtained with PCA between
the two groups of compounds (psychoactive and psy-
choinactive). The PCA results show that the three first
PCs describe 95.14% of the overall information (vari-
ance) of the data set (see Table 4). The first PC is
responsible for 55.39% of the total information and it is
mainly responsible for the separation between the active
and inactive cannabinoid compounds.

Figure 5 shows the eigenvalues (loadings) obtained
to each one of the variables used in the PCA analysis.
The results obtained showed that the variables could
be grouped in four distinct classes of variables: elec-
tronic (ELUMO), hydrophobic (Log P), steric (VC4)
and topological (LP1). This can be interpreted as an
indication that each class of molecular property con-
tributes for the biological activity presented by the
cannabinoid compounds. In fact, we can say that the
electronic property (ELUMO) would be responsible for
short-range electrostatic interactions that are estab-
lished between the drug and the biological receptor.
The hydrophobic property (Log P) would be respon-
sible for the transport of the drug through membrane
and contribute to the hydrophobic interactions in the

Table 1 Values of the Fisher’s
weight (WFish) for all calculated
variables

Variable WFish Variable WFish Variable WFish Variable WFish

DHf 0.992 qC8 0.086 NHO 0.050 CIC 0.103
Ee 0.249 qC9 0.138 NHD 0.050 BIC 0.096
ET 0.541 qS1 0.095 NHA 1.366 1 K 0.147
IP 0.567 qS2 0.018 ISIZ 0.211 2 K 0.070
l 0.675 qX1 0.478 MIC 1.355 PHI 0.055
EHOMO 0.567 qX2 0.161 IAC 0.289 Sv 0.000
ELUMO 0.636 L1 0.502 AAC 1.654 Se 0.000
H–it L 0.346 L2 0.011 ZM1 0.249 Sp 0.005
v 0.673 L3 0.166 ZM2 0.331 Ss 0.961
g 0.347 L4 0.017 CHL0 0.231 MDN 1.039
S 0.320 L5 1.294 CHL1 0.207 MAXDP 0.372
A 0.009 A1 0.020 CHL2 0.191 DELS 1.472
V 0.008 A2 0.070 CHL0A 0.390 HYF 0.162
EHid 0.323 A3 0.102 CHL1A 0.079 L1u 0.038
Log P 0.903 A4 0.162 CHL2A 0.367 L2u 0.370
MR 0.008 A5 0.062 ROUV 0.075 P1u 0.081
a 0.001 VC4 1.011 WIT 0.075 P2u 0.288
EH-1 0.416 VC2 0.000 WIA 0.090 L1m 0.138
EL+1 0.831 VC1 0.062 FP 0.274 L2m 0.554
Q1 0.085 h1 0.057 GSI 0.274 P1m 0.218
Q2 0.006 h2 0.531 BAL 1.345 P2m 0.477
Q3 0.039 h3 0.315 BAC 0.382 E1m 0.864
Q2¢ 0.143 NAT 0.012 ICEN 0.144 E2m 0.381
Q4¢ 0.770 SKC 0.212 IDE 0.466 E1v 0.466
AD 0.343 NBO 0.212 IDM 0.272 E1e 0.385
qC1 0.075 NH 0.240 IDDE 0.025 E1p 0.378
qC2 0.027 NC 0.008 IDDM 0.217 L1s 0.148
qC3 0.003 NO 1.366 IC 0.330 L2s 0.679
qC4 0.582 NCO 0.849 SIC 0.145 LP1 2.623
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Table 2 Correlation matrix between the selected variables obtained by using the Fisher’s weight

DHf l ELUMO v Log P EL+1 Q4’ L5 VC4 NO

DHf 1.00 �0.77 0.48 �0.58 0.44 �0.40 0.02 �0.29 �0.43 �0.96
l 1.00 �0.47 0.55 �0.59 0.33 0.01 0.08 0.17 0.80
ELUMO 1.00 �0.98 0.65 �0.40 0.43 �0.15 �0.16 �0.67
v 1.00 �0.70 0.44 �0.36 0.13 0.17 0.75
Log P 1.00 �0.39 0.18 0.00 �0.01 �0.63
EL+1 1.00 �0.23 0.26 0.28 0.44
Q4¢ 1.00 0.95 0.30 0.30
L5 1.00 0.95 0.30
VC4 1.00 0.41
NO 1.00

NCO NHA MIC AAC BAL Ss MDN DELS E1m LP1

DHf �0.69 �0.96 �0.97 �0.89 �0.73 �0.95 �0.89 �0.92 0.35 �0.74
l 0.67 0.80 0.80 0.81 0.61 0.77 0.79 0.83 �0.30 0.60
ELUMO �0.92 �0.67 �0.66 �0.72 �0.47 �0.63 �0.56 �0.75 0.49 �0.49
v 0.94 0.75 0.75 0.80 0.48 0.71 0.65 0.83 �0.47 0.49
Log P �0.61 �0.63 �0.61 �0.78 �0.34 �0.42 �0.55 �0.64 0.60 �0.32
EL+1 0.43 0.44 0.45 0.46 0.34 0.45 0.40 0.48 �0.35 0.39
Q4¢ 0.30 0.30 0.30 0.25 0.57 0.30 0.21 0.26 �0.31 0.67
L5 0.30 0.30 0.30 0.25 0.57 0.30 0.21 0.26 �0.31 0.67
VC4 0.36 0.41 0.42 0.33 0.66 0.43 0.26 0.36 �0.34 0.72
NO 0.83 1.00 1.00 0.97 0.76 0.95 0.88 0.98 �0.48 0.75
NCO 1.00 0.83 0.84 0.83 0.68 0.83 0.66 0.88 �0.51 0.67
NHA 1.00 1.00 0.97 0.76 0.95 0.88 0.98 �0.48 0.75
MIC 1.00 0.96 0.76 0.96 0.87 0.98 �0.47 0.76
AAC 1.00 0.69 0.87 0.90 0.96 �0.54 0.69
BAL 1.00 0.76 0.61 0.74 �0.61 0.94
Ss 1.00 0.83 0.96 �0.34 0.76
MDN 1.00 0.90 �0.34 0.62
DELS 1.00 �0.46 0.75
E1m 1.00 �0.57
LP1 1.00

Table 3 Calculated values for
the most important variables
used in the chemometric
analyses

Compound ELUMO (eV) Log P VC4 (Å3) LP1

Ac1 Active 0.412 5.346 71.70 2.551
Ac2 Active 0.403 5.346 71.70 2.551
Ac3 Active 0.399 5.814 71.70 2.564
Ac4 Active 0.417 6.210 71.70 2.568
Ac5 Active 0.399 5.814 71.70 2.564
Ac6 Active 0.407 6.210 71.70 2.568
Ac7 Active 0.407 5.743 71.70 2.551
Ac8 Active 0.402 5.743 71.70 2.551
Ac9 Active 0.415 5.677 71.70 2.554
Ac10 Active 0.413 6.007 71.70 2.556
Ac11 Active 0.412 6.800 71.70 2.556
Ac12 Active 0.428 5.667 71.70 2.554
Ac13 Active 0.428 6.800 71.70 2.556
Ic1 Inactive 0.427 5.814 151.80 2.569
Ic2 Inactive �0.328 5.045 71.70 2.573
Ic3 Inactive 0.008 5.045 180.35 2.580
Ic4 Inactive �0.244 5.076 71.70 2.574
Ic5 Inactive 0.044 5.076 240.07 2.582
Ic6 Inactive 0.423 6.210 211.55 2.574
Ic7 Inactive �0.522 5.091 240.54 2.594
Ic8 Inactive 0.433 6.210 211.59 2.574
Ic9 Inactive 0.413 5.814 152.12 2.569
Ic10 Inactive 0.224 4.505 71.70 2.571
Ic11 Inactive 0.337 4.433 71.70 2.560
Ic12 Inactive �1.431 4.105 92.73 2.569
Ic13 Inactive 0.059 4.655 71.70 2.573
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formation of the drug-receptor complex. The steric and
topological properties (VC4 and LP1) can be related to
the three-dimensional complementarity between the
drug and its receptor-binding site [32]. The property
LP1 is defined by Lovasz and Pelikan [33] as a
molecular branching index.

In Table 5 we can see the numerical values of the
loadings (coefficients) of the four selected variables for
the construction of the two first PCs (PC1 and PC2).
From Table 5 we can write PC1 as follows:

PC1 ¼ �0:530ELUMO � 0:444Log P þ 0:424VC4
þ 0:585LP1 ð1Þ

From the PC1 values in Table 6 we can see that the
active compounds have PC1 < 0 and the inactive
compounds have PC1 > 0. From Eq. 1 we can also see
that ELUMO and Log P contribute for PC1 negatively
whereas VC4 and LP1 contribute for PC1 positively. In
this way, it is possible to say that the contribution of all
four variables (multiplied by their coefficients in Eq. 1)
determines the presence or absence of psychoactivity in
cannabinoid compounds. Thus, for a cannabinoid
compound to present psychoinactivity, VC4 and LP1
need to present high values (i.e. the compounds need to
present a bulky substituent at the C4 position and sev-
eral branchings in the overall structure) whereas the
other variables (ELUMO and Log P) need to have low
values, as PC1 needs to present a positive value (PC1 >
0). For the active compounds, ELUMO and Log P need

to have high values and VC4 and LP1 need to have low
values, as PC1 needs to present a negative value (PC1 <
0). Therefore, in order to design new psychoinactive
cannabinoid compounds it is necessary to consider that
the candidate molecule presents high values for VC4 and
LP1 with low values for ELUMO and Log P.

HCA results

In our HCA study, the incremental technique [34] was
used for the calculation of distances among the com-
pounds and the dendrogram obtained with the selected
descriptors (ELUMO, Log P, VC4 and LP1) is presented
in Fig. 6. The vertical lines in Fig. 6 correspond to the
cannabinoid compounds and the horizontal lines cor-
respond to the similarity values between pair of com-
pounds, a compound and a class of compounds and
between the classes of compounds.

From Fig. 6 we can see that the better separation
between the two groups of cannabinoid compounds, i.e.
psychoactive (group A) and psychoinactive (group B),
was obtained only using the descriptors ELUMO, Log P,
VC4 and LP1, exactly the same descriptors obtained in
our PCA study. The similarity value between the two
classes of compounds was 0.0 and this means these two
classes are distinct. From Fig. 6 we can also see that the
HCA results are very similar to those obtained in our
PCA study, i.e. the compounds studied were grouped

Fig. 4 Score plot for the separation between the psychoactive
(group A) and psychoinactive (group B) cannabinoid compounds
studied

Fig. 5 Loading plot using only the variables responsible for
separation between the psychoactive (group A) and psychoinactive
(group B) cannabinoid compounds studied: ELUMO (energy of the
lowest unoccupied molecular orbital), Log P (logarithm of the
partition coefficient), VC4 (volume of the substituent at the C4
position) and LP1 (Lovasz–Pelikan index)

Table 4 Variance of the data set for the four PCs

Component Percentage Cumulative

PC1 55.39 55.39
PC2 31.40 86.79
PC3 8.35 95.14
PC4 4.86 100.00

Table 5 Loadings of the most important variables in the first two
PCs

Variable PC1 PC2

ELUMO �0.530 0.400
Log P �0.444 0.567
VC4 0.424 0.641
LP1 0.585 0.328
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into two categories: psychoactive compounds (labeled
Ac1–Ac13 in Fig. 2) and psychoinactive compounds
(labeled Ic1–Ic13 in Fig. 2). Thus, we can consider the

results obtained with HCA as a confirmation of those
obtained with PCA.

KNN results

This method was used for the validation of the initial
data set (the 26 cannabinoid compounds) and we used
the same variables employed in the PCA and HCA
analyses (ELUMO, Log P, VC4 and LP1). Table 7
presents the KNN results obtained with 1, 3 and 5
nearest neighbors. For the cases of 1 and 3 nearest
neighbors (1NN and 3NN, respectively), the percent-
age of correct information is 100.0%, whereas with
five nearest neighbor (5NN) this percentage is lower
(96.2%). We decided to use three nearest neighbor
(3NN) instead of 5NN because the percentage of
correct information is higher (100.0%), and we used
3NN instead of 1NN because the greater the number
of nearest neighbors, the better the reliability of the
KNN method.

The results obtained with the KNN method were
similar to those obtained with PCA and HCA showing
that the outcomes obtained with the three chemometric
methods (PCA, HCA and KNN) were informative, as
the three methodologies classified the cannabinoid
compounds into two classes (psychoactive and psycho-
inactive) exactly of the same way. From these results we
can say that one is able to have a high percentage of
success in classifying a new cannabinoid compound as
psychoactive or psychoinactive by using our PCA, HCA
and KNN models.

Remarks on the variables selected with the PCA, HCA
and KNN methods

The main goal of this work was to find the properties
responsible for the psychoinactivity of cannabinoid
compounds in order to help in the design of new can-
nabinoid molecules without psychoactivity that can be
used as therapeutic agents. It is important, therefore, to
make some comments on the variables that were found
responsible for the separation between the psychoactive
and psychoinactive compounds and to draw some con-
clusions from our chemometric study:

(a) From our psychoinactive PC1 equation (PC1 needs
to be positive for this kind of compounds, i.e. PC1

Fig. 6 Dendrogram obtained for the separation between the
psychoactive (group A) and psychoinactive (group B) cannabinoid
compounds studied

Table 7 Classification obtained with the KNN method

Category Number of
compounds

Compounds incorrectly
classified

1NN 3NN 5NN

Active 13 0 0 0
Inactive 13 0 0 1
Total 26 0 0 1
Percentage of
correct information

100.0 100.0 96.2

Table 6 PC1 score values for each cannabinoid compound studied

Compound PC1

Ac1 Active �1.147
Ac2 Active �1.136
Ac3 Active �0.750
Ac4 Active �0.818
Ac5 Active �0.750
Ac6 Active �0.805
Ac7 Active �1.396
Ac8 Active �1.390
Ac9 Active �1.206
Ac10 Active �1.311
Ac11 Active �1.819
Ac12 Active �1.216
Ac13 Active �1.839
Ic1 Inactive 0.043
Ic2 Inactive 1.119
Ic3 Inactive 1.837
Ic4 Inactive 1.047
Ic5 Inactive 2.301
Ic6 Inactive 0.480
Ic7 Inactive 3.628
Ic8 Inactive 0.467
Ic9 Inactive 0.063
Ic10 Inactive 0.674
Ic11 Inactive 0.003
Ic12 Inactive 3.035
Ic13 Inactive 0.888

207



> 0), we could see that Log P needs to present low
values. From the definition of partition coefficient
(partition of the compound between organic and
water phases) we can say that the psychoinactive
compounds studied present a high hydrophilic
character (i.e. with low lipophilicity) than the psy-
choactive ones. This indicates a low capacity of
crossing biological membranes and, consequently,
not able to reach the biological receptor since the
biological membrane is constituted mainly by lipid
containing cells.

(b) The energies of the frontier orbitals are important
properties in several chemical and pharmacological
processes. The reason for this is the fact that these
properties give information on the electron-donating
and electron-accepting character of a compound
and, consequently, on the formation of a charge
transfer complex (CTC). So, the energy of the
highest occupied molecular orbital (EHOMO) mea-
sures the electron-donating character of a com-
pound, and the higher the EHOMO, the higher the
electron-donating capability of the compound [35].
Also, the energies of the lowest unoccupied molec-
ular orbital (ELUMO) measure the electron-accepting
character of a compound and the lower the ELUMO,
the higher the electron-accepting capability of the
compound [35]. Analyzing the ELUMO for the psy-
choinactive compounds, we observed that the
ELUMO values need to have low values since PC1
needs to present a positive value. In other words, the
psychoinactive compounds will have a pronounced
electron-accepting character (low ELUMO values)
and, consequently, a charge transfer reaction is
likely to occur between the psychoinactive com-
pounds and the biological receptor-binding site.

(c) From our PC1 equation we can notice, as pointed
out previously, that the psychoinactive cannabinoid
compounds need to have PC1 > 0. Since VC4 and
LP1 are the variables in the PC1 equation that have
positive coefficients, we can see that VC4 and LP1
are the key variables that make PC1 > 0. Thus, we
can conclude that our PCA model shows that steric
and topological properties (VC4 and LP1, respec-
tively) have a dominant role in the psychoinactivity
mechanism of the cannabinoid compounds studied
in this work, as the compounds that present a bulky
substituent at the C4 position (high VC4) and several
branchings in the overall structure (high LP1) will
probably be psychoinactive.

(d) Perhaps one of the most interesting outcomes of this
work is the fact that VC4 is a key variable respon-
sible for the separation between the psychoactive
and psychoinactive cannabinoid compounds under
study. In previous works [36, 37], we have already
paid attention to the fact that VC4 could have an
important role in the inhibition of the psychoactivity
mechanism of cannabinoid compounds. The main
effect observed by Honorio et al. [36] and Honorio
and da Silva [37] was the influence of the size of

substituents at the C4 position, as this variable could
give support to the idea that substitutions at this
region could cause loss of activity in cannabinoid
molecules due to steric hindrances.

It is interesting to see that the importance of VC4 in
the psychoactivity of cannabinoid compounds (de-
scribed previously just using quantum chemical calcu-
lations [36, 37]) is also observed in this work through
chemometric methods (PCA, HCA and KNN) by using
a large number of molecular variables (116 variables). In
fact, we have found in this work mathematical evidences
(the PC1 equation and the HCA and KNN results) that
show VC4 is an important variable to be considered
when one is trying to study (understand) the psychoac-
tivity of cannabinoid compounds.

In order to validate our PCA, HCA and KNN re-
sults obtained with our training set (the 26 cannabinoid
compounds) we decided to perform a prediction study
with the aim to test our PCA, HCA and KNN models
in classifying a set of eight new cannabinoid com-
pounds with known psychoactivity (see Fig. 3) [16–20].
The prediction results obtained with this new set of
cannabinoid compounds are summarized in Table 8. It
is interesting to see that all of the eight new cannabi-
noid compounds were correctly classified according to
our PCA, HCA and KNN models. However, it is
important to notice that the compounds B and C were
incorrectly classified by HCA; but, as two of the three
models (PCA and KNN) classified compounds B and C
correctly and only HCA classified them incorrectly, it is
reasonable to consider compounds B and C as
psychoactive molecules.

Conclusions

According to our PCA, HCA and KNN studies, we have
shown that four variables can be considered important
to discriminate psychoactive and psychoinactive can-
nabinoid compounds: ELUMO (energy of the lowest
unoccupied molecular orbital), Log P (logarithm of the
partition coefficient), VC4 (volume of the substituent at
the C4 position) and LP1 (Lovasz–Pelikan index—a
molecular branching index).

Table 8 The psychoactivity prediction results obtained with the
PCA, HCA and KNN methods for a set of eight new cannabinoid
compounds: active (+) and inactive (�)

Compound PCA HCA KNN

A (active) + + +
B (active) + � +
C (active) + � +
D (active) + + +
E (inactive) � � �
F (inactive) � � �
G (inactive) � � �
H (inactive) � � �
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According to our PCA study, a cannabinoid com-
pound will be psychoinactive when it presents high
values for VC4 and LP1 and low values for ELUMO and
Log P. Therefore, in order to design new psychoinactive
cannabinoids it is necessary that the candidate molecule
presents high values for VC4 and LP1 and low values for
ELUMO and Log P.

Our PCA model also showed that steric and topo-
logical properties (VC4 and LP1, respectively) have an
important role in the psychoinactivity mechanism of the
cannabinoid compounds studied in this work, as the
molecules that present a bulky substituent at the C4
position (high VC4) and several branchings in the
overall structure (high LP1) will probably be psychoin-
active.

The four variables (ELUMO, Log P, VC4 and LP1)
responsible for the discrimination between psychoactive
and psychoinactive cannabinoid compounds belong to
four different classes: electronic (ELUMO), hydrophobic
(Log P), steric (VC4) and topological (LP1), indicating
that the interaction between the cannabinoid com-
pounds studied and the biological receptor can occur
due to electronic, hydrophobic, steric and topological
features of the compounds.

From the prediction study performed with our PCA,
HCA and KNN models, we can conclude that these
models are able to give reliable information on the
psychoactivity of cannabinoid compounds, as the eight
new cannabinoid molecules (with known psychoactivity)
were correctly classified by our PCA, HCA and KNN
models.
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